Searching for solvent cavities via electron photodetachment: the ultrafast charge-transfer-to-solvent dynamics of sodide in a series of ether solvents.

نویسندگان

  • Molly C Larsen
  • Benjamin J Schwartz
چکیده

It was recently predicted by simulations and confirmed by neutron diffraction experiments that the structure of liquid tetrahydrofuran (THF) contains cavities. The cavities can be quite large and have a net positive electrostatic potential, so they can serve as pre-existing traps for excess electrons created via photodetachment from various solutes. In this paper, we use electron photodetachment via charge-transfer-to-solvent (CTTS) excitation of sodide (Na(-)) to probe for the presence of pre-existing cavities in a series of ether solvents: THF, diethyl ether, 1,2-dimethoxyethane (DME), and diglyme (DG). We find that electrons photodetached from sodide appear after a time delay with their equilibrium spectrum in all of these solvents, suggesting that the entire series of ethers contains pre-existing solvent cavities. We then use the variation in electron recombination dynamics with CTTS excitation wavelength to probe the nature of the cavities in the different ethers. We find that the cavities that form the deepest electron traps turn on at about the same energy in all four ether solvents investigated, but that the density of cavities is lower in DG and DME than in THF. We also examine the dynamics of the neutral sodium species that remains following CTTS photodetachment of an electron from sodide. We find that the reaction of the initially created gas-phase-like Na atom to form a (Na(+),e(-)) tight-contact pair occurs at essentially the same rate in all four ether solvents, indicating that only local solvent motions and not bulk solvent rearrangements are what is responsible for driving the partial ejection of the remaining Na valence electron.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The roles of the solute and solvent cavities in charge-transfer-to-solvent dynamics: ultrafast studies of potasside and sodide in diethyl ether.

Although electron transfer reactions are among the most fundamental in chemistry, it is still not clear how to isolate the roles of the solute and solvent in moving charge between reactants in solution. In this paper, we address this question by comparing the ultrafast charge-transfer-to-solvent (CTTS) dynamics of potasside (K(-)) in diethyl ether (DEE) to those of sodide (Na(-)) in both DEE an...

متن کامل

Building a molecular-level picture of the ultrafast dynamics of the charge-transfer-to- solvent (CTTS) reaction of sodide (Na–)*

Charge-transfer-to-solvent (CTTS) reactions represent the simplest possible electron-transfer reaction. One of the reasons that such reactions have become the subject of recent interest is that transfer of a CTTS electron from an atomic anion to the solvent involves only electronic degrees of freedom, so that all the dynamics involved in the reaction are those of the solvent. Thus, CTTS reactio...

متن کامل

Solvent effects on the ultrafast dynamics and spectroscopy of the charge-transfer-to-solvent reaction of sodide

In ‘‘outer sphere’’ electron transfer reactions, motions of the solvent molecules surrounding the donor and acceptor govern the dynamics of charge flow. Are the relevant solvent motions determined simply by bulk solvent properties such as dielectric constant or viscosity? Or are molecular details, such as the local solvent structure around the donor and acceptor, necessary to understand how sol...

متن کامل

Manipulating the production and recombination of electrons during electron transfer: Femtosecond control of the charge-transfer-to-solvent (CTTS) dynamics of the sodium anion.

The scavenging of a solvated electron represents the simplest possible electron-transfer (ET) reaction. In this work, we show how a sequence of femtosecond laser pulses can be used to manipulate an ET reaction that has only electronic degrees of freedom: the scavenging of a solvated electron by a single atom in solution. Solvated electrons in tetrahydrofuran are created via photodetachment usin...

متن کامل

The ultrafast charge-transfer-to-solvent dynamics of iodide in tetrahydrofuran. 1. Exploring the roles of solvent and solute electronic structure in condensed-phase charge-transfer reactions.

Although they represent the simplest possible charge-transfer reactions, the charge-transfer-to-solvent (CTTS) dynamics of atomic anions exhibit considerable complexity. For example, the CTTS dynamics of iodide in water are very different from those of sodide (Na-) in tetrahydrofuran (THF), leading to the question of the relative importance of the solvent and solute electronic structures in con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 131 15  شماره 

صفحات  -

تاریخ انتشار 2009